Nanomaterials

Graphene may be the key material to smooth out carbon fiber’s high price

By April Gocha / June 12, 2020

A team of researchers found adding a small amount of graphene can improve the structural alignment of spun carbon fibers, reinforcing their strength—and providing the potential to produce much more inexpensive carbon fiber materials.

Read More

Fluorescing boron nitride nanotubes provide look at material’s motion in solution

By Lisa McDonald / June 5, 2020

Understanding how nanotubes move in solution is useful for both processing the material and for application in fluid environments, such as the body. Researchers at Rice University investigated how boron nitride nanotubes move in solution and found they behave like rigid rods, just like carbon nanotubes.

Read More

Not just the edges—defects impart electrocatalytic properties to entire graphene surface

By Lisa McDonald / May 29, 2020

Defects in a material’s structure offer scientists a way to alter certain material properties. In a new study, three researchers in Russia investigate how different defects in graphene alter the material’s electron transfer kinetics.

Read More

More than coffee cups—ceramic containers with advanced functionality

By Jonathon Foreman / May 19, 2020

Ceramic nanocontainers, known for their potential as drug carriers in medical applications, are being investigated in a variety of other fields as well. In two recent JACerS articles, George Kordas investigates the potential of ceramic nanocontainers in energy and anticorrosion applications.

Read More

Breaking orbital symmetry—researchers achieve arbitrary control of light chirality

By Lisa McDonald / May 8, 2020

Controlling the chirality of light is important in many fundamental and applied studies. An international research collaboration designed and fabricated a metasurface that can control chirality by breaking the symmetry of light’s orbital angular momentum.

Read More

To infrared and beyond: Proposed quantum-based photodetector may expand spectral operating range

By Lisa McDonald / May 1, 2020

Since 2000, infrared photodetector technology has experienced rapid development—particularly quantum-based detectors. Now, researchers in Russia, Japan, and the United States developed a model for a detector that could operate in the far-infrared and even terahertz spectral ranges.

Read More

Roadmap to commercialize all-solid-state batteries

By April Gocha / April 14, 2020

In a recent review article, nanoengineers at the University of California, San Diego outline a research roadmap detailing four remaining challenges to address before all-solid-state batteries can reach their commercial potential.

Read More

A ripe time for invention—new sensor could help prevent food waste

By Lisa McDonald / April 10, 2020

Food waste is a major problem in the United States. To combat this problem, researchers at the Massachusetts Institute of Technology developed a sensor that monitors the plant hormone ethylene, which could reveal when fruits and vegetables are about to spoil.

Read More

‘MXene’mum production—two improvements in MXene processing

By Lisa McDonald / March 20, 2020

Industry must be able to mass produce high-quality MXenes if MXene-based devices are to take off. Two Drexel groups published papers describing new ways to improve processing, by scaling up production and removing water from chemical synthesis.

Read More

Data that lasts—modification of ferroelectric transistor structure improves memory retention

By Lisa McDonald / March 10, 2020

Ferroelectric field-effect transistors are nonvolatile memory devices that nondestructively read stored data. However, data retention times in these devices are short. Purdue University researchers suggest a modification to conventional Fe-FET structure could overcome this obstacle.

Read More